

Advanced Materials for Mercury 50 Gas Turbine Combustion System

Jeffrey Price
Solar Turbines Incorporated
San Diego, California

2nd Distributed Energy Peer Review December 2-4, 2003 Washington D.C.

- Project Description and Goals/Objectives
- Project Team/Partnerships
- Task Definition and Activities Planned
- Milestones Completed and Planned
- Key Technical Barriers and Strategies to Overcome
- Project Risks
- Impact of Project on Goals of the Distributed Energy Program
- Summary

Project Description & Goals/Objectives

- Improve Mercury 50 Advanced Combustion System Durability
 - Goal: 30,000 hours / 3,000 cycles
- Reduce Life Cycle Cost
- Minimize Performance & Engine/Package Design Impact
- Maintain Single Digit Emissions
- Combustor Liner and Fuel Injector Tip Applications
- Advanced Materials Technologies
 - Improved Thermal Barrier Coatings (TBCs)
 - Oxide Dispersion Strengthened (ODS) Alloys
 - CFCC Liner with Environmental Barrier Coatings
 - Monolithic Ceramics
- 4000-Hour Engine Demonstration at End User Site
- Expand Technologies to Other Gas Turbine Engines

- Program Sponsor
 - U.S. Department of Energy (DOE)
 Office of Distributed Energy, Washington, DC
 - Debbie Haught, Merrill Smith
- DOE Project Management
 - DOE Chicago Operations Office, Argonne, IL
 - Dale Dietzel, Steve Waslo
 - DOE Golden Field Office, Golden, CO
 - Paul Bakke

- Marketing Consultant
 - Onsite Energy, Keith Davidson
- Thermal Barrier Coating Suppliers
 - Solar Turbines Incorporated
 - United Technologies Research Center
 - University of Connecticut
 - Praxair Surface Technologies, Inc.
 - The Welding Institute
- TBC Life Prediction
 - Research Applications, Inc.
- Oxide Dispersion Strengthened Alloys
 - Schwarzkopf Technologies Corporation
 - Special Metals Incorporated

- CFCC Liner Suppliers
 - Goodrich Corporation
 - GE Power Systems Composites
 - COI Ceramics/Siemens Westinghouse
- Environmental Barrier Coatings
 - United Technologies Research Center
- Monolithic Ceramic Suppliers
 - Honeywell Ceramic Components
 - Kyocera Industrial Ceramics Corporation
- Materials Characterization
 - Oak Ridge National Laboratory
- Nondestructive Evaluation
 - Argonne National Laboratory

Task Definition & Activities Planned

- TASK 1: Preliminary Concept Design and Evaluation
 - Task 1A: CFCC Combustor Liner Durability Testing
- TASK 2: Sub-Scale Testing (Single Injector Rig)
- TASK 3: M50 Engine Adaptation to Accept Modified System
- TASK 4: Full-Scale Hardware Tests (Rig and Engine Tests)
- TASK 5: Field Evaluation (4,000 hours)

Improved Liner Durability

- High thermal resistance TBC systems
 - Thicker TBC systems
 - TBC systems with lower thermal conductivity
- High-temperature superalloys
 - Y₂O₃ oxide dispersion-strengthened
 (ODS)
- Continuous fiber-reinforced ceramic-matrix composite (CFCC)
 - Environmental barrier coating (EBC)
 - Lower cost ceramic fibers
 - CFCC durability testing in Centaur 50 engine

Solar Turbines A Caterpillar Company

Advanced TBC Development -

- Task 1
- TBC Coating Systems evaluated through isothermal cyclic furnace testing
 - Solar Baseline 25 mil YSZ TBC
 - Multiple Solar Deposited 40 mil YSZ TBCs
 - Praxair 40 mil dense vertically cracked YSZ TBC
 - United Technologies 40 mil YSZ TBC
 - United Technologies 20 mil YSZ TBC (low thermal conductivity system)
 - UCONN Solution Plasma Sprayed TBC
 - 25 mil Low thermal expansion TBC (UCONN/Solar)
- Solar TBC system down-selected based on cyclic testing results

Thermal Barrier Coating System	2000°F <u>10 hr cycles</u>	2100°F <u>10 hr cycles</u>
Solar 25 mil Baseline	350, 377	106, 108
Solar 40 mil Advanced TBC	542, 558, 560	196, 201, 212

Advanced TBC Development - Task 1

- Completed TBC thermal conductivity study (ORNL)
 - Ceramic coupons aged isothermally
 - Temperature dependence (1800°F 2400°F)
 - Time dependence (As-sprayed 5,000 hours)
 - Density and thermal diffusivity measured
 - Thermal conductivity calculated for exposure time and temperature
 - Results used for design and life prediction
- Completed TBC life prediction for advanced TBC
 - Over 30,000 hour life predicted for advanced TBC
 - Cyclic testing
 - Microstructural characterization
 - Thermal conductivity study

Advanced TBC Rig Testing Task 2

- Completed baseline 25-mil TBC single injector (SI) rig thermal paint test
 - SI rig test parameters consistent w/ M50 operating parameters
 - Thermal paint temperatures consistent with thermocouples
 - 360° uniform temperatures (± 50 degrees)

• Down-selected Advanced 40 mil TBC scheduled for test by year end

SI Rig

Advanced TBC Rig Testing Task 2

TBC "Rainbow" Test

SI Liner with Thermal Paint

Advanced TBC Rig Testing -

Task 2

Solar Turbines

Single-Injector Rig Inner Liner
25-mil Baseline TBC Thermal Paint Test

Advanced TBC Turbine Modifications - Task 3

 No engine adaptations or control system modifications are required for the 40 mil Advanced TBC system

- Subtask B Topical Report
 - Commercialization Plan submitted in Sept. 2003

Advanced TBC Full Scale Testing -Task 4

- 1000-hour full-scale engine Test of 40 mil thick
 Advanced TBC
 - Completed initial TBC 200-hr engine test, 50 cycles
 - Mercury 50 S/N 002
 - Solar developmental test cell
 - TBC remained in excellent (as sprayed) condition
 - Liner will continue testing for 800+ hours

Improved Injector Tip Durability

- Monolithic ceramic, silicon nitride (Si₃N₄)
 - Need proven environmental barrier coating
- High-temperature superalloy
 - Y₂O₃ oxide dispersion-strengthened (ODS)

ODS Injector Tip Development -Task 1

- Yttria Oxide Dispersion Strengthened
 - Fe-based substrate: MA 956
 - Ni-based substrate: MA 754
- Exceptional high-temperature strength and creep resistance
 - Coarse and highly elongated grains
 - Fine dispersion of stable hard particles
- Joining is a serious problem
 - Traditional methods destroy elongated grain orientation and agglomerate particles
 - Strength reduced up to 65% from welding

ODS Injector Tip Development -Task 1

- Initiated validation of ODS MA 956 extruded bar material properties
 - Successful joining achieved by brazing concentric ring test samples and simplified injector tip
 - Initial laser welding trials made on ODS concentric ring samples
 - Brazed injector tip assembly showed visible cracks as received - exacerbated with machining and joining operations
 - MA 956 supplier Special Metals engaged in diagnosing potential material processing problem
- Suspended design, fabrication, and testing of injector tips pending resolution of material performance
 - Alternate materials (MA754) /suppliers (Plansee) under evaluation

CFCC Durability Testing -Task 1A

10 Field Installations

- More than 59,000 Total Hrs of Full-Load Field Operation
- Over 15,000 hrs on single set of liners with EBC
- ChevronTexaco
 Exploration & Production,
 Bakersfield, California
- Malden Mills Industries, Lawrence, Massachusetts
- Reduced Emissions

CFCC Durability Testing - Task 1A

ChevronTexaco Field Test 6 - Refurbished Liners

12,373 Total Hours of Operation

Malden Mills Test 1 7238 Hours

Texaco Test 6 5135 Hours

Outer Liner 3 Layer EBC — Si/Mullite+BSAS/BSAS EBC

Inner Liner 2 Layer EBC Si/BSAS EBC

CFCC Durability Testing - Task 1A

ChevronTexaco Field Test 7 - Oxide/Oxide CMC Liner

- **Began May 16, 2003**
- Outer Liner NIST ATP Program –
 CMCs for Advanced Engine Components
 - Hybrid CMC: Oxide/Oxide
 + Friable Graded Insulation
 (ATK COI Ceramics/ Siemens
 Westinghouse Power Corp.)
- Inner Liner CSGT Program
 - HACI Hi-Nicalon/Enhanced SiC CVI with SiC Seal Coat, 3-layer EBC
- Over 4000 hours, 25 starts
- Hybrid CMC in Excellent Condition

Borescope - Hybrid CMC, 3384 hrs

CFCC Durability Testing - Task 1A

Malden Mills - Field Test 3

- Test initiated in July 2002
- Combustor removed in July 2003
- 8368 hours, 32 starts
- CFCC SiC/SiC Liner Selection
 - GE PSC Tyranno/SiC-Si MI
 - No SiC Seal Coat
 - First MI Outer Liner
 - Minimize CVI Tool Marks
- Enhanced EBC SAS

Outer Liner
3 Layer: Si/Mullite+SAS/SAS EBC

Inner Liner 2 Layer: Si/SAS EBC

A Caterpillar Company

Program Schedule

2003 Milestones Accomplished

•	Early Engine Demonstration with Advanced TBC	April 2003
•	Down-selected TBC for 4000 hr engine demonstration	July 2003
	 40 mil Solar Advanced TBC 	
•	ODS injector tips fabricated	June 2003
•	ODS brazing studies completed	July 2003
•	Commercialization Plan Completed (Subtask B)	Sept. 2003
•	Complete 8000 hrs field test of Tyranno liner	July 2003
	 Advanced SAS EBC 	
•	Over 4000 hours field test of Oxide/Oxide/FGI CMC	Oct. 2003

2004 Milestones Planned

•	Complete 0.040" advanced TBC Single Injector test	Nov. 2003
•	Coat full scale liner with advanced 40-mil TBC	Jan. 2004
•	Start 4000 hr engine test advanced 40-mil TBC liner	May 2004
	 Mercury 50 field demonstration site 	
•	Fabricate ODS injector tips	Mar. 2004
•	Rig and In-house Engine test ODS injector tip	July 2004
•	Engine test of MI CFCC liner with EBC	July 2004
	 Goodrich 3D slurry cast, GE PSC pre-preg 	
•	Continue testing of Current CFCC liners	Ongoing
	 Advanced SAS EBC liner 	
	 Oxide/Oxide/FGI liner 	

Key Technical Barriers & Strategies to Overcome

Combustor Liners

- Advanced TBC appears very promising
 - No key barriers identified
 - Need to demonstrate 30,000 hour life

Injector Tips

- Must demonstrate repeatable ODS material properties
 - Working with suppliers to resolve issues
 - Evaluating alternate ODS alloys as well as other materials
- ODS Alloy Attachment Concepts must be proven
 - Demonstrate in long term durability test

Key Technical Barriers & Strategies to Overcome

CFCC Combustor Liners

- Need to reduce cost of CFCC liners
 - Lower cost fibers, lower fiber volume
 - Reduce EBC cost
 - Oxide/oxide system
- Need to demonstrate 30,000 hr EBC life
 - Continue field test of 3 layer SAS EBC system
 - Evaluate alternate EBC systems if needed

- Completion of 4000-hour test of ODS injector tip by Sept. 2005
 - Material processing issues must be resolved
 - Fabrication and attachment must be proven
 - Must complete single injector rig test prior to engine demonstration
 - Injector tips can be exchanged in the field with minimal interruption
 - Alternate solutions to injector tip durability being evaluated

Impact of Project on Distributed Energy Program

- By reducing life cycle costs, the Mercury 50 gas turbine will be more attractive to the distributed power generation and co-generation market. As the market penetration of the Mercury 50 expands in the near- and mid-terms, the U.S. will benefit from:
 - Single digit NOx and CO emissions
 - Reduced CO₂ emissions due to the growth in co-generation in the near-term and the use of high efficiency gas turbine systems in the mid-term
 - Lower cost electricity as the benefits of distributed power generation are realized
 - More efficient use of natural gas in the U.S. and a reduced reliance on imported oil
 - A more robust electric power infrastructure through distributed power generation

Collaborations/Leveraging of Funds

- DOE Advanced Turbine Systems Program
- DOE Ceramic Stationary Gas Turbine Program
- DOE Continuous Fiber Ceramic-Matrix Composite Program
- South Carolina Institute for Energy Studies AGTSR/UTSR Programs
- NASA EPM and UEET Programs
- United Technologies Research Center
- National Laboratory Support: ORNL and ANL

Collaborations/Leveraging of Funds

- GE Power System Composites and Global Research Center
 - DOE Advanced Materials Program
- Subcontractor Cost Share Goodrich Corporation
- NIST Program
 - ATK COI Ceramics/Siemens Westinghouse Power Corp
- End User Contribution
 - Chevron/Texaco, Malden Mills, Mercury 50 Field Demonstration Site

Advanced TBC

- Increased predicted liner life from 18,000 to over 30,000 hours through advanced TBCs
- Advanced 40 mil TBC system significantly exceeds cyclic life of baseline 25 mil TBC system
- Coated sub-scale cans for single injector rig testing
- Down-selected to Solar 40-mil advanced YSZ TBC for liner application and 4000 hr field demonstration

ODS Injector Tip

- Down-selected to ODS for injector tip application
- Developed acceptable brazing methods for ODS rings
- ODS material property issues are being addressed

CFCC Durability Testing

- SiC/SiC CFCC Liners Have Been Tested for over 59,000 Hours in Field Testing at the ChevronTexaco and Malden Mills Sites
- Over 15,000 hours on One Set of Liners Coated with an EBC
- Over 12,000 hours on refurbished liners/EBC previously tested for 7238 hrs
- Over 8000 hrs on Tyranno liner with Advanced SAS EBC
- Over 4000 hours on Hybrid Oxide/Oxide CMC + Friable Graded Insulation
- SiC/SiC CFCC Liners Have Consistently Reduced Gas Turbine Emissions of NOx and CO

Submitted Subtask B - Commercialization Topical Report

Advanced Materials for Mercury 50 Gas Turbine Combustion System

Questions?

